The Learnability of Symbolic Automata

George Argyros! and Loris D’Antoni?

! Columbia University, New York, NY
argyros@cs.columbia.edu

2 University of Wisconsin-Madison, WI
loris@cs.wisc.edu

Abstract. Symbolic automata (s-FAs) allow transitions to carry predi-
cates over rich alphabet theories, such as linear arithmetic, and therefore
extend classic automata to operate over infinite alphabets, such as the
set of rational numbers. In this paper, we study the problem of the learn-
ability of symbolic automata. First, we present M AT™, a novel L*-style
algorithm for learning symbolic automata using membership and equiv-
alence queries, which treats the predicates appearing on transitions as
their own learnable entities. The main novelty of M AT is that it can
take as input an algorithm A for learning predicates in the underlying
alphabet theory and it uses A to infer the predicates appearing on the
transitions in the target automaton. Using this idea, M AT™ is able to
learn automata operating over alphabets theories in which predicates
are efficiently learnable using membership and equivalence queries. Fur-
thermore, we prove that a necessary condition for efficient learnability of
an s-FA is that predicates in the underlying algebra are also efficiently
learnable using queries and thus settling the learnability of a large class
of s-FA instances. We implement M AT™ in an open-source library and
show that it can efficiently learn automata that cannot be learned us-
ing existing algorithms and significantly outperforms existing automata
learning algorithms over large alphabets.

1 Introduction

In 1987, Dana Angluin showed that finite automata can be learned in polynomial
time using membership and equivalence queries [3]. In this learning model, often
referred to as a minimally adequate teacher (MAT), the teacher can answer
(i) whether a given string belongs to the target language being learned and
(#) whether a certain automaton is correct and accepts the target language, and
provide a counterexample if the automaton is incorrect. Following this result,
her L* algorithm has been studied extensively [16,15], it has been extended to
several variants of finite automata [11,4,19] and has found many applications in
program analysis [2,5,6] and program synthesis [23].

Recent work [5,10] developed algorithms which can efficiently learn s-FAs
over certain alphabet theories. These algorithms operate using an underlying
predicate learning algorithm which can learn partitions of the domain using

predicates from counterexamples. While such results give sufficient conditions
under which s-FAs can be efficiently learned, they do not provide any necessary
conditions. More precisely, the following question remains open:

For what alphabet theories can s-FAs be efficiently learned?

In this paper, we make significant progress towards answering this ques-
tion by providing new sufficient and necessary conditions for efficiently learning
symbolic automata. More specifically, we present M AT™*, a new algorithm for
learning s-FAs using membership and equivalence queries. The main novelty of
M AT* is that it can accept as input a MAT learning algorithm A for predicates
in the underlying alphabet theory. Afterwards, M AT* spawns instances of A to
infer each transition in the target s-FA and efficiently answers membership and
equivalence queries performed by A using the s-FA membership and equivalence
oracles. The predicate learning algorithms do not need to learn entire partitions
but individual predicates and therefore, M AT* greatly simplifies the design of
learning algorithms for s-FAs by allowing one to reuse existing learning algo-
rithms for the underlying alphabet theory. Moreover, M AT* allows the under-
lying predicate learning algorithms to perform both membership and equivalence
queries, thus extending the class of efficiently learnable s-FAs to MAT-learnable
alphabet theories—e.g., bit-vector predicates expressed as BDDs.

Furthermore, we show that a necessary condition for efficiently learning a
symbolic automaton over a Boolean algebra is that the individual predicates in
the algebra also have to be efficiently learnable. Moreover, we provide a charac-
terization of the instances which are not efficiently learnable by our algorithm
and conjecture that such instances are not learnable by any efficient algorithm.

We implement M AT™* in the open-source symbolicautomata library [1] and
evaluate it on 15 regular-expression benchmarks, 1,500 s-FA benchmarks over
bit-vector alphabets, and 18 synthetic benchmarks over infinite alphabets. Our
results show that M AT* can efficiently learn automata over different alphabet
theories, some of which cannot be learned using existing algorithms. Moreover,
for large finite alphabets, M AT™* significantly outperforms existing automata
learning algorithms.

Contributions In summary, our contributions are:

— MAT™, the first algorithm for learning symbolic automata that operate over
MAT-learnable alphabet theories—i.e., in which predicates can be learned
using only membership and equivalence queries (Section 3).

— A soundness result for M AT* and new necessary and sufficient conditions
for the learnability of symbolic automata. Moreover, a characterization of
the remaining class for which the learnability is not settled (Section 4).

— A modular implementation of M AT* in an existing open-source library
together with a comprehensive evaluation on existing and new automata-
learning benchmarks (Section 6).

2 Background

2.1 Boolean Algebras and Symbolic Automata

In symbolic automata, transitions carry predicates over a decidable Boolean
algebra. An effective Boolean algebra A is a tuple (D,%,[], L, T,V, A,) where
D is a set of domain elements; ¥ is a set of predicates closed under the Boolean
connectives, with L, T € ¥; [] : ¥ — 2® is a denotation function such that
(i) [L] = 0, (id) [T] = D, and (i) for all p,¢ € ¥, [p V] = [¢] U [¥],
e A] = [l N [¥], and [—¢] =D\ [¢].

Ezample 1 (Equality Algebra). The equality algebra for an arbitrary set © has
predicates formed from Boolean combinations of formulas of the form Ac.c = a
where a € ©. Formally, ¥ is generated from the Boolean closure of ¥y = {¢, |
a € DYU{L, T} where for all a € ®, [,] = {a}. Examples of predicates in this
algebra include Ac.c =5V ¢ =10 and Ac. =(c = 0).

Definition 1 (Symbolic Finite Automata). 4 symbolic finite automaton
(s-FA) M is a tuple (A, Q, qinit, F, A) where A is an effective Boolean algebra,
called the alphabet; @ is a finite set of states; qinie € @ is the initial state;
F C Q is the set of final states; and A C Q X ¥4 X @ is the transition relation
consisting of a finite set of moves or transitions.

Characters are elements of ® 4, and words or strings are finite sequences of
characters, or elements of ©%. The empty word of length 0 is denoted by €. A
move p = (q1,9,q2) € A, also denoted by ¢ %5 o, is a transition from the
source state g1 to the target state g2, where ¢ is the guard or predicate of the
move. For a state ¢ € @, we denote by guard(q) the set of guards for all moves
from q. For a character a € D4, an a-move of M, denoted q; = ¢ is a move
q1 5> gy such that a € [¢].

An s-FA M is deterministic if, for all transitions (q,¢1,q1),(q, p2,q2) €
A g1 # g = [p1 Aps] = B—i.e., for each state g and character a there
is at most one a-move out of ¢q. An s-FA M is complete if, for all ¢ € Q,
IV (4.1.01ea il = D—i.e., for each state ¢ and character a there exists an a-
move out of ¢. Throughout the paper we assume all s-FAs are deterministic and
complete, since determinization and completion are always possible [9]. Given
an s-FA M = (A, Q, ¢init, F, A) and a state ¢ € @), we say a word w = ajas - - - ag
is accepted at state q if, for 1 < i < k, there exist moves ¢;_1 —» ¢; such that
Ginit = q and g € F.

For a deterministic s-FA M and a word w, we denote by M,[w] the state
reached in M by w when starting at state g. When ¢ is omitted we assume that
execution starts at ginit. For aword w = ay - - - ag, we use wli..| = a; - - - ag, w[..i] =
ay -+ a;, wli] = a; to denote the suffix starting from the i-th position, the prefix
up to the i-th position and the character at the i-th position respectively. We
use B = {T,F} to denote the Boolean domain. A word w is called an access
string for state ¢ € Q if M[w] = q. For two states ¢,p € Q, a word w is called a
distinguishing string, if exactly one of M,[w] and M,[w] is final.

2.2 Learning Model

In this paper, we follow the notation from [16]. A concept is a Boolean function
c:® — B. A concept class C is a set of concepts which is represented using
representation class R. By representation class we denote a fixed function from
strings to concepts in C. For example, regular expressions, DFAs and NFAs are
different representation classes for the concept class of regular languages.

The learning model under which all learning algorithms in this paper operate
is called exact learning from membership and equivalence queries or learning
using a Minimal Adequate Teacher (MAT), and was originally introduced by
Angluin [3]. In this model, to learn an unknown concept ¢ € C, a learning
algorithm has access to two types of queries:

Membership Query: In a membership query O(x), the input is z € © and
the query returns the value ¢(x) of the concept on given input z—i.e., T if
x belongs to the concept and F otherwise.

Equivalence Query: In an equivalence query £(H), the input given is a hy-
pothesis (or model) H. The query returns T if for every x € ©, H(z) = ¢(z).
Otherwise, an input w € D is returned such that H(w) # c(w).

An algorithm is a learning algorithm for a concept class C if, for any ¢ € C, the
algorithm terminates with a correct model for ¢ after making a finite number of
membership and equivalence queries. In this paper, we will say that a learning
algorithm is efficient for a concept class C if it learns any concept ¢ € C using
a polynomial number of queries on the size of the representation of the target
concept in R and the length of the longest counterexample provided to the
algorithm.

An effective Boolean algebra A = (D,¥,[], L, T,V,A,—) naturally defines
the concept class 2° with representations in ¥ of predicates over the domain D.
We will say that an algorithm is a learning algorithm for the algebra A to denote
a learning algorithm that can efficiently learn predicates from the representation
class V.

3 The MAT* Algorithm

Our learning algorithm, M AT*, can be viewed as a symbolic version of the
TTT algorithm for learning DFAs [15], but without discriminator finalization.
The learning algorithm accepts as input a membership oracle O, an equivalence
oracle £ as well as a learning algorithm A for the underlying Boolean algebra
used in the target s-FA M. The algorithm uses a classification tree [16] to gen-
erate a partition of ®* into equivalence classes which represent the states in
the target s-FA. Once a tree is obtained, we can use it to determine, for any
word w € ©*, the state accessed by w in M-—i.e., what state the automa-
ton reaches when reading the word w. Then, we build an s-FA model H, using
the algebra learning algorithm A to create models for each transition guard

Algorithm 1 s-FA-LEARN(O, &, A) // s-FA Learning algorithm
Require: O: membership oracle, £: equivalence oracle, A: algebra learning algorithm.
T < InitializeClassificationTree(O)
SA < InitializeGuardLearners(T, A)
H + GetSFAModel(T, Sx, O)
while £(H) # T do
w + GetCounterexample(H)
T, S < ProcessCounterexample(T, Sa, w, O)
H + GetSFAModel(T, Sa, O)

return H

and utilizing the classification tree in order to implement
a membership oracle for A. Once a model is generated,
we check for equivalence and, given a counterexample, we
either update the classification tree with a new state and
a corresponding distinguishing string, or propagate the
counterexample into one of the instances of the algebra
learning algorithm A. The structure of M AT™ is shown
in Algorithm 1. In the rest of the section, we use the s-FA
in Figure 1 as a running example for our algorithm.

Fig.1. An s-FA over
equality algebra.

3.1 The Classification Tree

The main data structure used by our learning algorithm

is the classification tree (CT) [16]. The classification tree is a tree data structure
used to store the access and distinguishing strings for the target s-FA so that
all internal nodes of the tree are labelled using a distinguishing string while all
leafs are labeled using access strings.

Definition 2. A classification tree T = (V, L, E) is a binary tree such that:

— V C X* is the set of nodes.
— L CV is the set of leafs.
— E CV xV xB is the transition relation. For (v,u,b) € E, we say that v is

the parent of u and furthermore, if b= T (resp. b = F) we say that u is the
T-child (resp. F-child).

Intuitively, given any internal node v € V, any leaf i1 reached by following the
T-child of v can be distinguished from any leaf [reached by the F-child using
v. In other words, the membership queries for [7v and [gpv produce different
results—i.e., O(lpv) # O(lpv).

Tree initialization. To initialize the CT data structure, we use a membership
query on the empty word e. Then, we create a CT with two nodes, a root node
labeled with € and one child also labeled with e. The child of the root is either
a T-child or F-child, according to the result of the O(e) query.

Learned (@) Classification (b) Failed Completeness check

States Tree F T
A CE:'g 4
OH—>

(c) Failed Determinism check
T —(c="a")

A
F e CE: a’

=] =]
G@ —P

Fig. 2. (left) Classification tree and corresponding learned states for our running exam-
ple. (right) Two different instances of failed partition verification checks that occured
during learning and their respective updates on the given counterexamples (CE).

The sift operation. The main operation performed using the classification tree
is an operation called sift which allows one to determine, for any input word s,
the state reached by s in the target s-FA. The sift(s) operation performs the
following steps:

1. Set the current node to be the root node of the tree and let w be the label
at the root. Perform a membership query on the word sw.

2. Let b = O(sw). Select the b-child of the current node and repeat step 2 until
a leaf is reached.

3. Once a leaf is reached, return the access string with which the leaf is labelled.

Note that, until both children of the root node are added, we will have inputs
that may not end up in any leaf node. In these cases our sift operation will
return | and M AT™* will add the queried input as a new leaf in the tree.

Once a classification tree is obtained, we use it to simulate a membership
oracle for the underlying algebra learning algorithm A. This oracle is then used
to infer models for the transitions and eventually construct an s-FA model. In
figure 2 we show the classification tree and the corresponding states learned
by the MAT* algorithm during the execution on our running example from
figure 1.

3.2 Building an s-FA Model

Assume we are given a classification tree T = (V, L, E). Our next task is to
use the tree along with the underlying algebra learning algorithm A to pro-
duce an s-FA model. The main idea is to spawn an instance of the A algo-
rithm for each potential transition and then use the classification tree to an-
swer membership queries posed by each A instance. Initially, we define an s-FA

H = (A, Qn,qe, F, Ayy), where Qy = {gs | s € L}—i.e. we create one state
for each leaf of the classification tree T'. Finally, for any ¢ € Q3 , we have that
q € Fy if and only if O(q) = T. Next, we will show how to build the transition
relation for H. As mentioned above, our construction is based on the idea of
spawning instances of A for each potential transition of the s-FA and then using
the classification tree to decide, for each character, if the character satisfies the
guard of the potential transition thus answering membership queries performed
by the underlying algebra learner.

Guard inference. To infer the set of guards in the transition relation Ay, we
spawn, for each pair of states (qu,qy) € Qu X Q3, an instance Alqu:0) of the
algebra learning algorithm. We answer membership queries to A(7+:%) as follows.
Let o € D be a symbol queried by A(@+9%) Then, we return T as the answer
to O(a) if sift(ua) = v and F otherwise. Once A(%::%) submits an equivalence
query &(¢) using a model ¢, we suspend the execution of the algorithm and add
the transition (qy, ¢, g,) in Ay.

Partition verification. Once all algebra learners have submitted a model through
an equivalence query, we have a complete transition relation Ay. However, at
this point there is no guarantee that for each state g the outgoing transitions
from ¢ form a partition of the domain ®. Therefore, it may be the case that our
s-FA model H is in fact non-deterministic and, moreover, that certain symbols do
not satisfy any guard. Using such a model in an equivalence query would result
in an ¢mproper learning algorithm and potential problems in the counterexam-
ple processing algorithm in Section 3.3. To mitigate this issue we perform the
following checks:

Determinism check: For each state ¢ € @ and each pair of moves
(55 @15 qu), (@5, #2,q0) € Ay, we verify that [¢1 A ¢a] = 0. Assume that
a character « is found such that o € [¢1 A @2] and let m = sift(sa). Then,
it must be the case that the guard of the transition g5 — ¢, must satisfy a.
Therefore, we check if m = v and m = v and provide « as a counterexample
to A(4=:94) and A4%) respectively if the corresponding check fails.

Completeness check. For each state ¢, € Q3 let S = {¢ | (¢,6,p) € Ay}
We check that [\ g @] = D. If a symbol h & [V g ¢] is found then, let
v = sift(uh). Following the same reasoning as above, we provide h as a
counterexample to A(@),

These checks are iterated for each state until no more counterexamples are found.
In figure 2 we demonstrate instances of failed determinism and completeness
checks while learning our running example from figure 1 along with the corre-
sponding updates on the predicates. For details regarding the equality algebra
learner, see section 5.

Optimizing the number of algebra learning instances. Note that in the description
above, M AT* spawns one instance of A for each possible transition between
states in H. To reduce the number of spawned algebra learning instances, we
perform the following optimization: For each state gs; we initially spawn a single
algebra learning instance A7), Let a be the first symbol queried by A7) and

let u = sift(sa). We return T as a query answer for o to A(%>?) and set the
target state for the instance to g, i.e. we convert the algebra learning instance
to Al4s:9u) Afterwards, we keep a set R = {q, | v = sift(sf)} for all f € D
queried by the different algebra learning instances and generate new instances
only for states ¢, € R for which the guards are not yet inferred. Using this
optimization, the total number of generated algebra learning instances never
exceeds the number of transitions in the target s-FA.

3.3 Processing Counterexamples

For counterexample processing, we adapt the algorithm used in [5] in the setting
of MAT* . In a nutshell, our algorithm works similarly to the classic Rivest-
Schapire algorithm [22] and the TTT algorithm [15] for learning DFAs, where
a binary search is performed to locate the index in the counterexample where
the executions of the model automaton and the target one diverge. However,
once this breakpoint index is found, our algorithm performs further analysis to
determine if the divergence is caused by an undiscovered state in our model
automaton or because the guard predicate that consumes the breakpoint index
character is incorrect.

Error localization. Let w be a counterexample for a model H generated as de-
scribed above. For each index i € [0..|w]|], let ¢, = H[w][..7]] be the state accessed
by w[..i] in H and let v; = ww[i + 1..]. In other words, +; is obtained by first
running w in H for ¢ steps and then, concatenating the access string for the
state reached in H with the word w[i + 1..]. Note that, because initially the
model H and the target s-FA start at the same state accessed by €, the two
machines are synchronized and therefore, O(7g) = O(w). Moreover, since w is a
counterexample, we have that O(7),|) # O(w). It follows that, there exists an
index j, which we will refer to as breakpoint, for which O(~;) # O(v;41). The
counterexample processing algorithm uses a binary search on the index j to find
such a breakpoint. For more information on the correctness of this method we
refer the reader to [5,22].

Breakpoint analysis. Once we find an index j such that O(v;) # O(v;+1) we can
conclude that the transition taken in H from H[w]..j]] with the symbol w[j+1] is
incorrect. In traditional algorithms for learning DFAs, the sole reason for having
an incorrect transition would be that the transition is actually directed to a yet
undiscovered state in the target automaton. However, in the symbolic setting
we have to explore two different possibilities. Let ¢, = H[w]..j]] be the state
accessed in H by wl..j], ¢» = sift(uw[j +1]) be the result of sifting uw[j + 1] in
the classification tree and consider the transition (g, @, q,) € Az. We use the
guard ¢ to determine if the counterexample was caused by an invalid predicate
guard or an undiscovered state in the target s-FA.

Case 1. Incorrect guard. Assume that w[j+1] € [¢]. Note that, ¢ was generated
as a model by A(@%) and therefore, a membership query from A(@«%) for a
character o returns T if sift(ua) = v. Moreover, we have that sift(uw[j +
1]) = v. Therefore, if w[j + 1] & [¢], then w[j + 1] is a counterexample for the

Fig. 3. (left) A minimal s-FA. (right) The s-FA corresponding to the classification tree
of MAT™ with access strings for ginit and g2 and a single distinguishing string e.

learning instance A(«:%) which produced ¢. We proceed to supply A(2=:%) with
the counterexample w([j 4+ 1], update the corresponding guard and continue to
generate a new s-FA model.

Case 2. Undiscovered state. Assume w[j + 1] € [¢]. It follows that ¢ is behaving
as expected on the symbol w[j 4+ 1] based on the current classification tree. We
conclude that the state accessed by w[..j + 1] is in fact an undiscovered state
in the target s-FA which we have to distinguish from the previously discovered
states. Therefore, we proceed to add a new leaf in the tree to access this state.
More specifically, we replace the leaf labelled with v with a sub-tree consisting
of three nodes: the root is the word w[j 4 1..], which is the distinguishing string
for the states accessed by v and ww[j + 1]. The T-child and F-child of this
node are labelled with the words v and uwlj] based on the results of O(v) and
O(uwlj + 1]).

Finally, we have to take care of one last point: Once we add another state in
the classification tree, certain queries that were previously directed to v may be
directed to uwlj] once we sift them down in the tree. This change implies that
certain previous queries performed by algebra learning instances A(%::%) may be
given invalid results and therefore, we can no longer guarantee correctness of the
generated predicates. To solve this problem, we terminate all instances A=)
for all ¢ € Q4 and replace them with fresh instances of the algebra learning
algorithm.

4 Correctness and Completeness of M AT™*

Given a learning algorithm A, we use CZ(n) to denote the number of membership
queries and C/(n) to denote the number of equivalence queries performed by A
for a target concept with representation size n. In our analysis we will also use
the following definitions:

Definition 3. Let M = (A, Q, qo, F, A) over a Boolean algebra A and let S C
V4. Then, we define:

— The mazimum size of the union of predicates in S asU(S) = maxgcs IV sea 9I-

~ The mazimum guard union size for M as B(M) = max,cq U(guard(q)).

The value B(M) denotes the maximum size that a predicate guard may
take in any intermediate hypothesis produced by M AT* during the learning
process. Contrary to traditional L*-style algorithms, the size of the intermediate
hypothesis produced by M AT* may fluctuate as we demonstrate in the following
example.

Ezample 2. Consider the s-FA in the left side of figure 3. When we execute
the M AT* algorithm in this s-FA, and after an access string for g2 is added
to the classification tree, the tree will correspond to the s-FA shown on the
right, in which the transition from gi,; is taken over the union of the individual
transitions in the target. Certain sequences of answers to equivalence queries can
force M AT* to first learn a correct model of ¢ V ¢5 V ¢3 before revealing a new
state in the target s-FA.

We now state the correctness and query complexity of our algorithm.

Theorem 1. Let M = (A, Q, qo, F, A) be an s-FA, A be a learning algorithm A
and let k = B(M). Then, MAT* will learn M using A with O(|Q|*| A|CA (k) +
|Q|?|A|CA (k) logm) membership and O(|Q||A|CA(k)) equivalence queries, where
m is the length of the longest counterezample given to M AT™.

Proof. First, we note that our counterexample processing algorithm only splits
a leaf if there exists a valid distinguishing condition separating the two newly
generated leafs. Therefore, the number of leafs in the discrimination tree is always
at most |@Q|. Next, note that each counterexample is processed using a binary
search with complexity O(logm) to detect the breakpoint and, afterwards, either
a new state is added or a counterexample is dispatched to the corresponding
algebra learner.

Each classification tree T' = (V, L, E) defines a partition over ©* and, there-
fore, an s-FA Hp. In the worst case, M AT* will learn Hr exactly before a new
state in the target s-FA is revealed through an equivalence query. Since Hr is
the result of merging states in the target s-FA, we conclude that the size of each
predicate in Hr is at most k. It follows that, for each classification tree T', we can
get at most |Ayy,.[C2 (k) counterexamples until a new state is uncovered on the
target s-FA. Note here, that our counterexample processing algorithm ensures
that each counterexample will be either a valid counterexample for a predicate
guard in H or it will uncover a new state. For each membership query performed
by an underlying algebra learner, we have to sift a string in the classification
tree which requires at most |Q| membership queries. Therefore, the total num-
ber of membership queries performed for each candidate model H is bounded by
O(|A|(|Q|CA (k) +CA (k) log m) where m is the size of the longest counterexample
so far. The number of equivalence queries is bounded by O(|A|CA(k)). When a
new state is uncovered, we assume that, in the worst case, all the algebra learners
will be restarted (this is an overestimation) and therefore, the same process will
be repeated at most |Q| times giving us the stated bounds.

Note that the bounds on the number of queries stated in theorem 1 are based
on the worst-case assumption that we may have to restart all guard learning
instances each time we discover a new state. In practice, we expect these bounds
to be closer O(|A|CA(k)+(|AICA (k) +|Q]) log m) membership and O(]A|CA (k) +
|Q|) equivalence queries.

Minimality of learned s-FA. Since the M AT™* will only add a new state in
the s-FA if a distinguishing sequence is found it follows that the total number
of states in the s-FA is minimal. Moreover, M AT* will not modify in any way
the predicates returned by the underlying algebra learning instances. Therefore,
if the size of the predicates returned by the A instances is minimal, M AT™* will
maintain their minimality.

The following theorem shows that it is indeed not possible to learn s-FAs
over a Boolean algebra that is not itself learnable.

Theorem 2. Let AFA be an efficient learning algorithm for the algebra of s-
FAs over a Boolean algebra A. Then, the Boolean algebra A is efficiently learn-
able.

‘Which s-FAs are efficiently learnable? Theorem 2 shows that efficient lern-
ability of an s-FA requires efficient learnability of the underlying algebra. More-
over, from theorem 1 it follows that efficiently learnability using M AT™ depends
on the following property of the underlying algebra:

Corollary 1. Let A be an efficiently learnable Boolean algebra and consider the
class Rj{FA of s-FAs over A. Then, Rj{FA is efficiently learnable using M AT*
if and only if, for any set S C W4 such that for any distinct ¢, € S —
[o AY] =0, we have that U(S) = poly(|S|, maxees |P]).

At this point we would like to point out that the above condition arises due to the
fact that M AT* is a congruence-based algorithm which successively computes
hypothesis automata based on refining a set of access and distinguishing strings
which is a common characteristic among all L*-based algorithms. Therefore,
this limitation of M AT™* is expected to be shared by any other algorithm in
the same family. Given the fact that after three decades of research, L*-based
algorithms are the only known, provably efficient algorithms for learning DFAs
(and subsequently s-FAs), we expect that expanding the class of learnable s-FAs
is a very challenging task.

5 Learnable Boolean Algebras

We will now describe a number of interesting effective Boolean algebras which
are efficiently learnable using membership and equivalence queries.

Boolean Algebras over finite domains. Let A be any Boolean Algebra over a
finite domain ®. Then, any predicate ¢ € ¥ can be learned using |D| member-
ship queries. More specifically, the learning algorithm constructs a predicate ¢

accepting all elements in ® for which the membership queries return true as
¢ ={c|ceDAO(c) =T} Plugging this algebra learning algorithm into our
algorithm, we get the TTT learning algorithm for DFAs without discriminator
finalization [15]. This simple example demonstrates that algorithms for DFAs
can be viewed as special cases of our s-FA learning algorithm for finite domains.

Equality Algebra. Consider the equality algebra defined in example 1. Predicates
in this algebra of size |¢| = k can be learned using 2k equivalence queries and
no membership queries. Initially, the algorithm outputs the empty set | as a
hypothesis. In any subsequent step, the algorithm keeps a list of the counterex-
amples obtained so far in two sets P, N C ® such that P holds all the positive
examples received so far and N holds all the negative examples. Afterwards,
the algorithm finds the smallest hypothesis consistent with the counterexamples
given. This hypothesis can be found efficiently as follows:

L. If [P| > |N| then, ¢ = Xe. = (V ey ¢ = d).

2. If [P| < |N| then, ¢ = Ae. (Vyepc=d).
It can be easily shown that the algorithm will find a correct hypothesis after at
most 2k equivalence queries.

Other Algebras. The following Boolean algebras can be efficiently learned using
membership and equivalence queries. All these algebras also have approximate
fingerprints [3], which means that they are not learnable by equivalence queries
alone. Thus, s-FAs over these algebras are not efficiently learnable by previous
s-FA learning algorithms [10,5].
BDD algebra. The algebra of ordered binary decision diagrams (OBDDs) is
efficiently learnable using a variant of the L* [21].
Tree automata algebra. Deterministic finite tree automata form an algebra
which is also learnable using membership and equivalence queries [12].
s-FA algebra. s-FAs themselves form an effective Boolean algebra and there-
fore, s-FAs over s-FAs over learnable algebras are also learnable.

6 Evaluation

We have implemented M AT™ in the open-source symbolicautomata library [1],
as well as the learning algorithms for boolean algebras over finite domains, equal-
ity algebras and BDD algebras as discussed in Section 5. Our implementation
is fully modular: Once an algebra learning algorithm is defined in our library,
it can be seamlessly plugged in as a guard learning algorithm for s-FAs. Since
MAT* is also an algebra learning algorithm, this allows us to easily learn au-
tomata over automata. All experiments were ran in a Macbook air with an 1.8
GHz Intel Core i5 and 8 GiB of memory. The goal of our evaluation is to answer
the following research questions:

Q1: How does M AT* perform on automata over large finite alphabets? (§ 6.1)

Q2: How does M AT™* perform on automata over algebras that require both
membership and equivalence queries? (§ 6.2)

Q3: How does the size of predicates affect the performance of MAT*? (§ 6.3)

Table 1. Evaluation of M AT™ on regular expressions.

ID || [Q| |A| | Memb | Equiv. R-CE GU | D-CE C-CE
RE1 || 11 35 | 653 17 19 25 | 106 78
RE.2 || 24 113 | 7203 66 45 8T | 565 479
RE3 || 11 15 | 483 11 16 16 | 59 45
RE4 || 18 40 | 1745 17 33 32 | 188 164
RE5 | 25 55 | 3180 22 48 45 | 244 211

RE.6 52 155 | 43737 588 104 640 3102 2953
RE.7 179 658 | 66477 1486 91 1398 | 7748 6540
RE.8 115 175 | 929261 299 206 390 | 28606 28354
RE.9 144 369 | 844213 699 261 817 | 30485 30135
RE.10 || 175 551 | 3228102 | 5346 286 5457 | 172180 170483

RE.11 6 9 3409 281 14 289 723 710
RE.12 || 10 14 1367 88 8 86 314 291
RE.13 || 29 46 20903 743 49 764 2637 2550
RE.14 8 13 5949 365 24 381 854 836
RE.15 8 15 661 82 2 76 228 198

6.1 Equality Algebra Learning

In this experiment, we use M AT™* to learn s-FAs obtained from 15 regular ex-
pressions drawn from 3 domains: (1) Regular expressions used in web application
sanitization frameworks such as in the Codelgniter framework, (2) Regular ex-
pressions drawn from popular web application firewall ModSecurity and finally
(3) Regular expressions from [17]. For this set of experiments we utilize as alpha-
bet the entire UTF-16 (2'¢ characters) and used the equality algebra to represent
predicates. Since the alphabet is finite, we also tried learning the same automata
using TTT [15], the most efficient algorithm for learning finite automata over
finite alphabets.

Results Table 1 presents the results of M AT*. The Memb and Equiv columns
present the number of distinct membership and equivalence queries respectively.
The R-CE column shows how many times a counterexample was reused, while
the GU column shows the number of counterexamples that were used to update
an underlying predicate (as opposed to adding a new state in the s-FA). Finally,
D-CE shows the number of counterexamples provided to an underlying algebra
learner due to failed determinism checks, while C-CE shows the number of coun-
terexamples due to failed completeness checks. Note that these counterexamples
did not require invoking the equivalence oracle.

Given the large alphabet sizes, TTT runs out of memory on all our bench-
marks. This is not surprising since the number of queries required by TTT
just to construct the correct model for a DFA with 128 = 27 states is at least
|X]|Q|log |Q| = 26 % 27 % 7 ~ 225, We point out that a corresponding lower
bound of 2(]Q|log |Q||X]) exists for the number of queries any DFA algorithm
may perform and therefore, the size of the alphabet provides a fundamental
limitation for any such algorithm.

Analysis. First, we observe that the performance of the algorithm is not al-
ways monotone in the number of states or transitions of the s-FA. For example,
RE.10 requires more than 10x more membership and equivalence queries than
RE.7 despite the fact that both the number of states and transitions of RE.10
are smaller. In this case, RE.10 has fewer transitions, but they contain predicates
that are harder to learn—e.g., large character classes. Second, the completeness
check and the corresponding counterexamples are not only useful to ensure that
the generated guards form a partition but also to restore predicates after new
states are discovered. Recall that, once we discover (split) a new state, a number
of learning instances is discarded. Usually, the newly created learning instances
will simply output L as the initial hypothesis. At this point, completeness coun-
terexamples are used to update the newly created hypothesis accordingly and
thus save the M AT* from having to rerun a large number of equivalence queries.
Finally, we point out that the equality algebra learner made no special assump-
tions on the structure of the predicates such as recognizing character classes
which are used in regular expressions and others. We expect that providing such
heuristics can greatly improve the performance M AT* in these benchmarks.

6.2 BDD Algebra Learning

In this experiment, we use M AT™ to learn s-FAs over a BDD algebra. We run
MAT* on 1,500 automata obtained by transforming Linear Temporal Logic
over finite traces into s-FAs [8]. The formulas have 4 atomic propositions and
the height in each BDD used by the s-FAs is four. To learn the underlying BDDs
we use M AT* with the learning algorithm for algebras over finite domains (see
section 5) since ordered BDDs can be seen as s-FAs over ® = {0, 1}.

Figure 4 shows the number of membership (top left) and equivalence (top
right) queries performed by MAT™* for s-FAs with different number of states.
For this s-FAs, M AT™* is highly efficient with respect to both the number of
membership and equivalence queries, scaling linearly with the number of states.
Moreover, we note that the size of the set of transitions |A| does not drastically
affect the overall performance of the algorithm. This is in agreement with the
results presented in the previous section, where we argued that the difficulty of
the underlying predicates and not their number is the primary factor affecting
performance.

6.3 s-FA Algebra Learning

In this experiment, we use M AT™* to learn 18 s-FAs over s-FAs, which accept
strings of strings. We evaluate the scalability of our algorithms when the diffi-
culty of learning the underlying predicates increases. The possible internal s-FAs,
which we will use as predicates, operate over the equality algebra and are de-
noted as I, (where 2 < k < 17). Each s-FA Ij, accepts exactly one word a---a
of length k and has k + 1 states and 2k + 1 transitions. The external s-FAs are
denoted as M,, , (where m € {5,10,15} and 2 < n < 17). Each s-FA M,, ,
accepts exactly one word s- - - s of length m where each s is accepted by I,,.

35000 ; ; ; 3000 ;

T T
[] ——

3on00 |- & of memb queries —v— /\7_ 2500 # of equiv queries —v— /"‘hf-.
4 /
25000 | ot - /
/ 2000 | / =
/
20000 -
.
~ 1500 - /_———J -
15000 | i g
o _/

4 1000 | 2 .
10000 | ;/ - /
e /
500 |- 4]
5000 s -
’,‘;’v e _‘_/ V,_._-—'\"‘)‘"v'—_'_""_-_""_-_v

o Loz b I 1 0 e Cimkinkimtiat i 1 1
0 50 100 150 200 250 0 50 100 150 200 250
Mumber of states Mumber of states
.
10 1 T I T T T T 600 I T T T T I
500 |- / J
2 g '
2 L 400 |- .
3 3 .
S
s 2 300 - / ./ .
=
H
£ S 200 - // |
b g e
100 - Q=5 —— |
[QF10 —o—
|Q||=15 —
U 1 L [l 1 L L

2 4 6 8 10 12 14 16 18
Guard size (states) Guard size (states)

Fig. 4. (Top) Evaluation of M AT™* on s-FAs over a BDD algebra. (Bottom) Evaluation
of MAT™ on s-FAs over an s-FA algebra. For an s-FA M., ,, the xz-axis denotes the
values of n. Different lines correspond to different values of m.

Analysis. For simplicity, let’s assume that we have the s-FA M,, ,,. Consider a
membership query performed by one of the underlying algebra learning instances.
Answering the membership query requires sifting a sequence in the classification
tree of height at most n which requires O(n) membership queries. Therefore,
the number of membership queries required to learn each individual predicate is
increased by a factor of O(n). Moreover, for each equivalence query performed
by an algebra learning instance, the s-FA learning algorithm has to pinpoint
the counterexample to the specific algebra learning instance, a process which
requires log m membership queries, where m is the length of the counterexample.
Therefore, we conclude that each underlying guard with n states will require a
number of membership queries which is of the order of O(n3) at the worst and
O(n?logn) queries at the best (since the CT has height £2(logn)), ignoring the
queries required for counterexample processing.

Figure 4 shows the number of membership (bottom left) and equivalence
(bottom right) queries, which verify the theoretical analysis presented in the
previous paragraph. Indeed, we see that in terms of membership queries, we
have a very sharp increase in the number of membership queries which is in
fact about quadratic in the number of states in the underlying guards. On the

other hand, equivalence queries are not affected so drastically, and only increase
linearly.

7 Related Work

Learning finite automata The L* algorithm proposed by Dana Angluin [3] was
the first to introduce the notion of minimally adequate teacher—i.e., learning
using membership and equivalence queries—and was also the first for learning
finite automata in polynomial time. Following Angluin’s result, L* has been
studied extensively [16,15], it has been extended to many other models—e.g., to
nondeterministic automata [11] alternating automata [4]—and has found many
applications in program analysis [2,5,6] and program synthesis [23]. Since finite
automata only operate over finite alphabets, all the automata that can be learned
using variants of L*, can also be learned using M AT™.

Learning symbolic automata The problem of scaling L* to large alphabets was
initially studied outside the setting of s-FAs using alphabet abstractions [14,13].
The first algorithm for symbolic automata over ordered alphabets was proposed
in [19] but the algorithm assumes that the counterexamples provided to the
learning algorithm are of minimal length. Argyros et al. [5] proposed the first
algorithm for learning symbolic automata in the standard MAT model and also
described the algorithm to distinguish counterexamples leading to new states
from counterexamples due to invalid predicates which we adapt in M AT™ . Drews
and D’ Antoni [10] proposed a symbolic extension to the L*algorithm, gave a
general definition of learnability and demonstrated more learnable algebras such
as union and product algebras. The algorithms in [5,10,18] are all extensions of L*
and assume the existence of an underlying learning algorithm capable of learning
partitions of the domain from counterexamples. M AT* does not require that
the predicate learning algorithms are able to learn partitions, thus allowing to
easily plug existing learning algorithms for Boolean algebras. Moreover, M AT™*
allows the underlying algebra learning algorithms to perform both equivalence
and membership queries, a capability not present in any previous work, thus
expanding the class of s-FAs which are can be efficiently learned.

Learning other models Argyros et al. [5] and Botincan et al. [6] presented al-
gorithms for learning restricted families of symbolic transducers—i.e., symbolic
automata with outputs. Other algorithms can learn nominal [20] and register
automata [7]. In these models, the alphabet is infinite but not structured (i.e.,
it does not form a Boolean algebra) and characters at different positions can be
compared using binary relations.

Acknowledgements The authors would like to thank the anonymous reviewers
for their valuable comments. Loris D’Antoni was supported by National Science
Foundation Grants CCF-1637516, CCF-1704117 and a Google Research Award.
George Argyros was supported by the Office of Naval Research (ONR) through
contract N00014-12-1-0166.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

lorisdanto/symbolicautomata: Library for symbolic automata and symbolic visi-
bly pushdown automata. https://github.com/lorisdanto/symbolicautomata/.
(Accessed on 01/29/2018).

. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface specifica-

tions for java classes. SIGPLAN Not., 40(1):98-109, Jan. 2005.

D. Angluin. Learning regular sets from queries and counterexamples. Information
and computation, 75(2):87-106, 1987.

D. Angluin, S. Eisenstat, and D. Fisman. Learning regular languages via alternat-
ing automata. In Proceedings of the 24th International Conference on Artificial
Intelligence, IJCAT’15, pages 3308-3314. AAAI Press, 2015.

G. Argyros, I. Stais, A. Kiayias, and A. D. Keromytis. Back in black: Towards
formal, black box analysis of sanitizers and filters. In IEEE Symposium on Security
and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 91-109, 2016.
M. Botincan and D. Babic. Sigma*: symbolic learning of input-output specifica-
tions. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages
443-456, 2013.

S. Cassel, F. Howar, B. Jonsson, and B. Steffen. Active learning for extended finite
state machines. Formal Aspects of Computing, 28(2):233-263, 2016.

L. D’Antoni, Z. Kincaid, and F. Wang. A symbolic decision procedure for symbolic
alternating finite automata. arXiv preprint arXiv:1610.01722, 2016.

L. D’Antoni and M. Veanes. The power of symbolic automata and transducers. In
Computer Aided Verification - 29th International Conference, CAV 2017, Heidel-
berg, Germany, July 24-28, 2017, Proceedings, Part I, pages 4767, 2017.

S. Drews and L. DAntoni. Learning symbolic automata. In International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems, pages
173-189. Springer, 2017.

P. Garcia, M. V. de Parga, G. L. Alvarez, and J. Ruiz. Learning Regular Lan-
guages Using Nondeterministic Finite Automata, pages 92—101. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

A. Habrard and J. Oncina. Learning multiplicity tree automata. In International
Colloquium on Grammatical Inference, pages 268—280. Springer, 2006.

F. Howar, B. Steffen, and M. Merten. Automata learning with automated al-
phabet abstraction refinement. In International Workshop on Verification, Model
Checking, and Abstract Interpretation, pages 263-277. Springer, 2011.

M. Isberner, F. Howar, and B. Steffen. Inferring automata with state-local alphabet
abstractions. In NASA Formal Methods Symposium, pages 124-138. Springer, 2013.
M. Isberner, F. Howar, and B. Steffen. The ttt algorithm: A redundancy-free
approach to active automata learning. In RV, pages 307-322, 2014.

M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory.
MIT press, 1994.

N. Li, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Reggae: Automated test
generation for programs using complex regular expressions. In Automated Software
Engineering, 2009. ASE’09. 24th IEEE/ACM International Conference on, pages
515-519. IEEE, 2009.

O. Maler and I. Mens. A generic algorithm for learning symbolic automata from
membership queries. In Models, Algorithms, Logics and Tools - Essays Dedicated
to Kim Guldstrand Larsen on the Occasion of His 60th Birthday, pages 146—169,
2017.

https://github.com/lorisdanto/symbolicautomata/

19

20.

21.

22.

23.

. I. Mens and O. Maler. Learning regular languages over large ordered alphabets.
Logical Methods in Computer Science, 11(3), 2015.

J. Moerman, M. Sammartino, A. Silva, B. Klin, and M. Szynwelski. Learning nom-
inal automata. In Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), 2017.

A. Nakamura. An efficient query learning algorithm for ordered binary decision
diagrams. Information and Computation, 201(2):178-198, 2005.

R. L. Rivest and R. E. Schapire. Inference of finite automata using homing se-
quences. Information and Computation, 103(2):299-347, 1993.

Y. Yuan, R. Alur, and B. T. Loo. Netegg: Programming network policies by
examples. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks,
HotNets-XIII, pages 20:1-20:7, New York, NY, USA, 2014. ACM.

	Lecture Notes in Computer Science

